
Amateur Radio Balloons

By KB7HTA

High Altitude Balloons

- Bill launched his first balloon into the Stratosphere carrying an Amateur TV transmitter and 2m beacon 33 years ago and has been instrumental in using ARHAB flights to encourage STEM education. He has flown over 600 flights since 1987.
- These balloons are made of latex 8-28'
- Can achieve altitudes above 80,000'
- Recoverable payloads with repeaters, APRS, ATV and cameras

Pico/Floater Balloons

- Light weight Less that 90 grams (3 oz.)
- Achieve altitudes of 35,000 55,000'
- Move with the winds 0 200+ MPH
- Balloon Usually 32" in dia.
- Filled with Helium or Hydrogen gas
- GPS Lightweight processor
- CPU Low power with flash and RAM
- Transmitter(s)
- Solar Panels
- Structure
- Software

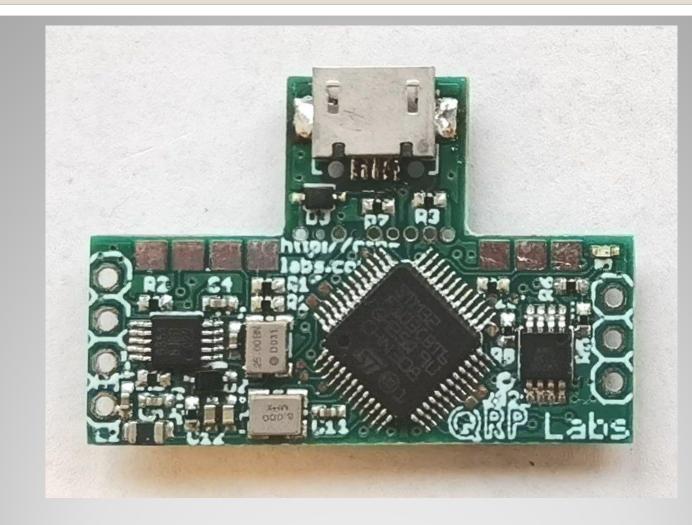
- An unmanned free balloon ARHAB may carry a single payload package that weighs up to six pounds
- An unmanned free balloon ARHAB may carry two or more payload packages that weigh up to 12 pounds.
- An unmanned free balloon ARHAB may carry a payload package that weighs up to four pounds and has a weight/size ratio of no more than three ounces per square inch on any surface of the package, determined by dividing the total weight in ounces of the payload package by the area in square inches of its smallest surface.

FAA Balloon Flight Regulations

- You cannot launch a balloon ARHAB from an airport without permission.
- You need to be able to see 5 miles (visibility), have no more than 50% cloud cover at launch and across your entire flight path.
- You cannot fly over a town or open-air group of people for the first 1,000 feet of (vertical) flight.
- Your balloon and its payload cannot be a hazard to people if it should hit them.

- Bottom line -- Pico balloons are not ARHABs, because of their light weight, are exempt from <u>14 CFR 101</u> that regulates balloons.
- Some countries don't allow transmissions from balloons, so Pico Balloons following the rules have to geo-fence their transmissions.
- Bottom line Opinion: As a US operator no one here in the UK is going to trouble you because you're transmitting a WSPR signal in UK airspace. As far as North Korea...nln

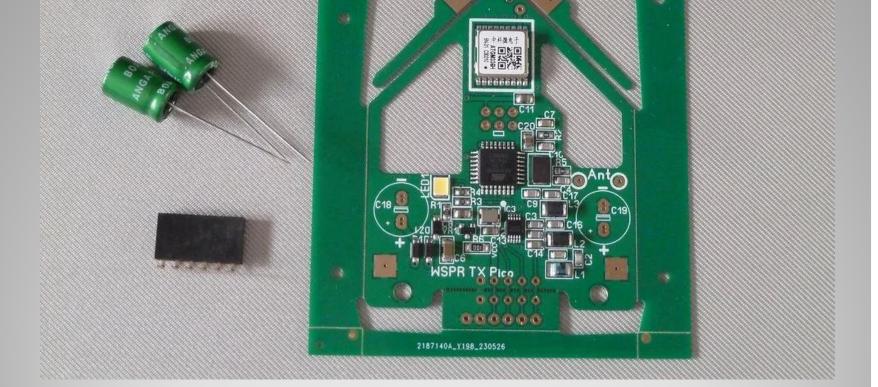
FAA and Other Regulations


Comercially Available Trackers

QRP LightAPRS-WSPR Tracker

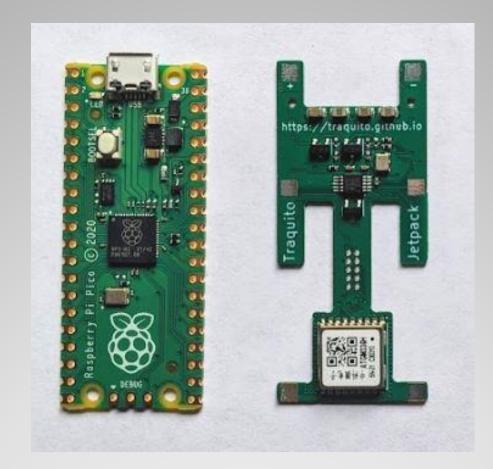
- Software: Open Source
- Weight: 9 grams
- Dimensions: 3.5 cm x 6 cm
- **IDE:** Arduino
- Platform: MightyCore
- CPU: Atmega1284P-AU
- Flash: 128 KB
- Ram: 16 KB
- EEPROM: 4 KB
- Operating Frequency: 8 MHz
- Operating Voltage: 3.3V
- Input Voltage: 4.5V (min) 10V (max) via USB or VBat pin
- **BOD:** 2.7V
- Sensor: BMP180 (pressure and temperature)
- VHF Radio Module: <u>Dorji DRA818V</u>

- VHF Radio Operating Frequency: 134-174 MHz (configurable by software)
- VHF Low Pass Filter: Available (7 elements)
- VHF Radio Power: 0.5W or 1W (configurable by software)
- VHF Power Consumption (TX): ~460 mA (0.5W) / ~760mA (1W) (Automatically selected based on input voltage by code)
- **HF Radio Module:** Si5351A-B-GT (included)
- HF Radio Operating Frequency: 2.5kHz 200Mhz (configurable by code)
- HF Low Pass Filter: No
- **HF Radio Power:** ~10mW
- Power Consumption (Sleep): ~5 mA
- GPS: Ublox MAX-M8Q (GPS-GLONASS)
- Gps Antenna Gain: 4.3dBi
- Extended Pins: I2C, SPI
- USB Serial: CH340G
- Cost -- \$130 plus shipping from Turkey



QRP Labs – U4B Tracker

- 33.0 x 12.7mm PCB (plus removable protrusion with USB connector)
- Weight: 1.8g (with USB protrusion removed)
- Onboard high performance GPS receiver
- 32-bit ARM microcontroller running QDOS (QRP Labs Disk Operating System)
- 128K disk (implemented on EEPROM chip)
- 10-27mW (approximately) transmitter using Si5351A synthesizer
- TCXO referenced frequency stability
- Band coverage 2200m to 2m
- LM75 temperature sensor
- Status LED
- USB interface for configuration, programming and easy firmware update (just copy the new firmware file into the apparent USB Flash drive)


- 19 GPIO pins of which 9 can be configured as analog inputs and 8 are easily accessible via PCB edge pads; all 19 can be used as digital input or output control pins
- I2C bus for connecting additional sensors e.g. pressure, humidity
- BASIC programming language with fullscreen text editor, compiler and debugger
- 128K Disk storage for your programs and data; BASIC can read/write data files
- Command line utility
- Telemetry over WSPR for relaying your additional sensor data

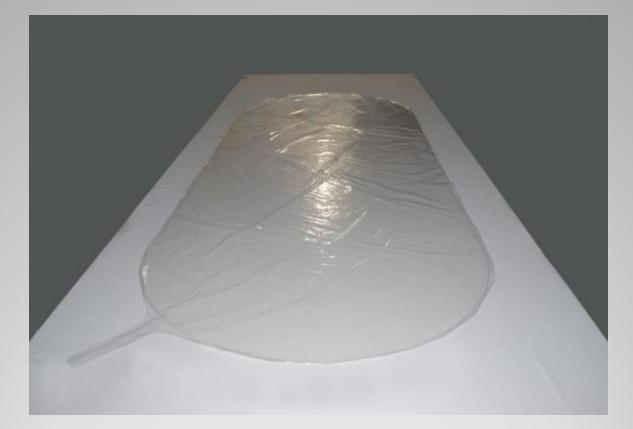
- Free firmware updates for life, when enhancements are developed as the use cases expand
- QRP Labs tracking and telemetry over WSPR
- WSPR (including extended mode and slow 15-minute WSPR)
- JT9 (1, 2, 5, 10, 30 minutes)
- JT65 (modes A, B, C)
- Hellshreiber (standard, DX, and slow multitone FSK)
- CW (standard speed, QRSS, FSKCW and DFCW)
- Customized "Glyph" patterns can produce a unique idenfier on QRSS
- Cost -- \$56.09 plus shipping from Turkey

ZachTek WSPR-TX Pico Tracker

- Low power 20mW autonomous shortwave WSPR transmitter for the 20m and 30m Amateur bands that continuously transmits its position and altitude during daylight.
- Onboard GPS module and antenna calculates position and altitude.
- Arduino compatible Micro-controller with open-source software and Phase-Locked-Loop oscillator with Lab-calibrated
 Temperature Compensated Crystal reference
 Oscillator (TCXO) generates transmissions.
- Weight 5.4gram (Without solar cells, HF antenna and balloon harness

Traquito Tracker

- RP2040 CPU
- Flash Memory
- Temperature sensor
- USB and support for Drag/Drop software upload
- GPS (ATGM336H)
- Radio Transmitter (SI5351A) + 0.5ppm TCXO
- Voltage Monitor
- Jetpack requires a maximum of 70mA at 3.3v to operate.
- Fixed programming
- Cost -- \$5.00 Pi + \$10.00 JetPack



Yokohama 32" Balloon \$29

SAG 32" Balloon \$15

SBS Balloon - (3' W X 7.5' L) \$150

Best Balloon Gas to Use

- Non-Flammable
- Atom is 11% smaller, leaks
- 8% less lift
- Difficult acquire 100% pure
- Expensive

• Flammable

- Molecule 11% bigger, doesn't leak
- 8% more lift
- Easy to acquire
- Inexpensive

- Transmitter design
- Power Output
- Band selection 40, 20, 17, 15, 12, 10m
- Mode of transmission
- Antenna design

Getting the Signal Out

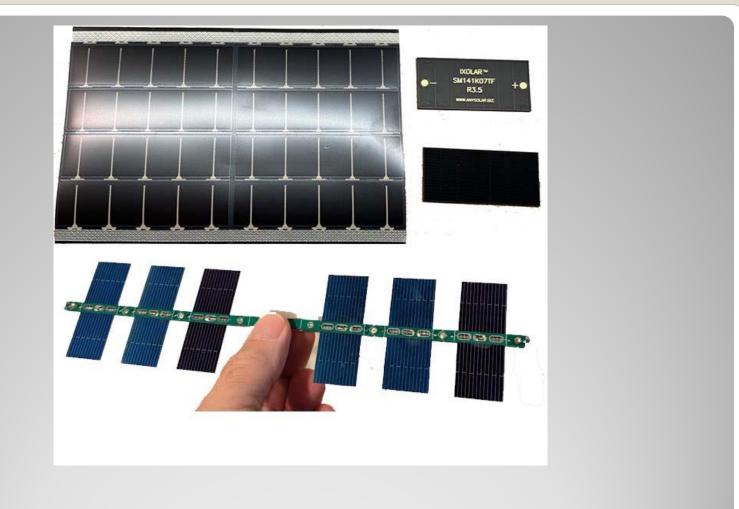
- The Silicon Labs Si5351, chip of choice
- I2C Programmable
- Each of 8 outputs 0 ppm error
- Replaces crystals
- Generate any frequency up to 160 MHz
- Output impedance 85 Ohms
- Operates on 3.3 Volts at 25 mA
- Power output, 13 30 mW
- Small footprint 3 x 5 mm
- Lightweight 0.2 gram

Transmitter Design

13 Apr 2024 1713 GMT	VHF Conditions		HF Conditions			Condition	K-In A-In	
SFI 152 SN 101	Iten	Status	Band	Day	Night	Quiet	0-2	0-7
A 6 K 1/Plntry	Aurora	Band Closed	80n-40n	Poor	Good	Unsettled	з	8-15
X-Ray C1.6	6n EsEU	Band Closed	30n-20n	Fair	Good	Active	4	16-29
304A 156.2 @ SEM	4n EsEU	Band Closed	17n-15n	Good	Good	Minor storm	5	30-49
	2n EsEU	Band Closed	12n-10n	Good	Foor	Major storm	6	50-99
Ptn Flx 10	2n EsNA		Geonag F	ield V	R QUIET	Severe storm	7-9	>100
Elc Flx 1230	EME Deg	Fair	Sig Nois			SFI A-In K-I		
Aurora 1/n=1.99	HILF MAR	Contraction of the local	MUF US B	oulder	and an and the	3 In		W open
Hur Lat 67.0		6 12 18 UTC	MUF US B	are Pr	b 39%	>180 <8 >3	N-	S open
Bz -0.9 SW 335.6	MS MIN	6 12 18 UIC MAX	(C) Paul	Herrow	an 2023	>250 >30 >3		rora

- Traditionally the balloons use the 20 m band
- More balloonists are now using 10, 12, 15 17 m
- TALARC ALPP40-A transmits on the 10 m band
- Balloons are only powered in daylight, so 10 m is OK
- TALARC ALP40-B had a battery, so it used 20 m

Band Selection – Propagation


- WSPR is used as the primary mode
- CW is used as a secondary
- QRSS used for sending glyphs
- The modes above send little data
- FM APRS for line of sight secondary
- Other modes are under consideration

Mode of Transmission

- A dipole is the best choice for HF
- One copper wire goes up to the balloon
- The other dangles beneath the payload
- A trapped dipole is being looked at...Rudi
- The GPS has 1" twisted (six turns) #28 gauge wire and dipole lengths of 45 mm receiving antenna

Antenna Design

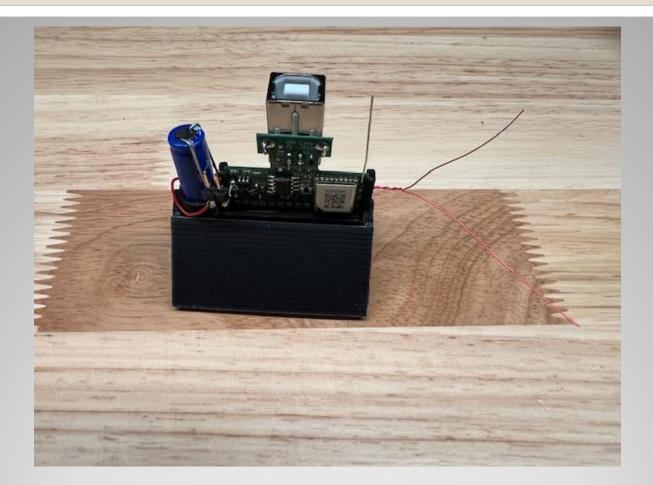
Solar Panels

- 10-20% more efficient at altitude
- Small commercially made panels
- Panels supply 4 7 Volts @50 100 mA
- Various sizes and masses
- Thin film (10%) & monocrystalline (25%)
- Construct panels from individual cells
- Cells supply 0.5 Volts @ 50 200 mA
- Various sizes and masses
- Cells are used to make custom panels
- Connected in series to get desired voltage

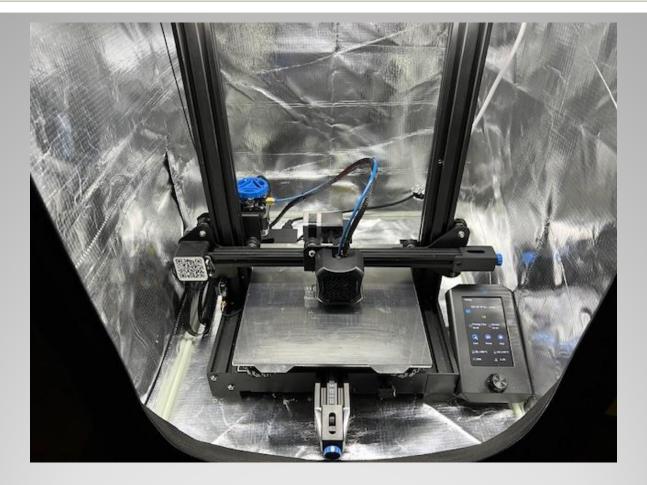
- Helps stabilize voltage and current for operation sunrise to sunset or at night
- Super Capacitor
 - Large number of charge/discharge cycles
 - Larger temperature range
 - Lower energy density
- Lithium Battery
 - Small number of charge/discharge cycles
 - Smaller temperature range
 - Higher energy density

Payload Energy Storage

Styrofoam


- Carbon fiber
- 3D Printed ABS plastic

Composite


Payload Structure

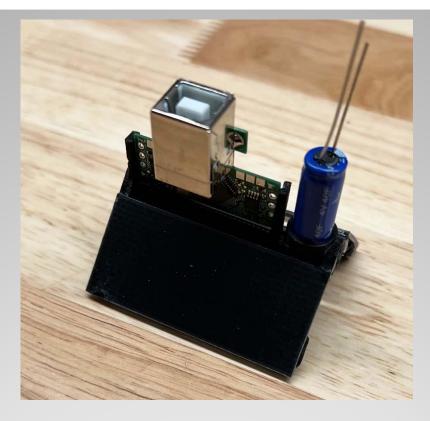
- It's time to construct a balloon
- Pick items from what has been presented
- Take a deep breath and start construction

Putting It All Together

TALARC ALP40-A Balloon Construction

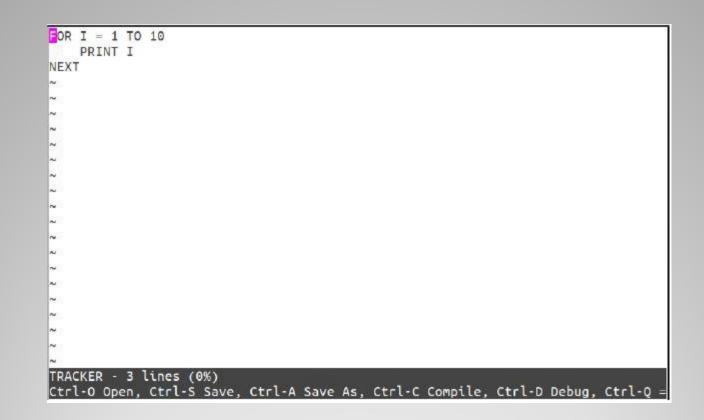
3D Print ABS Structure Parts

ALP40-A Type Structure


Completed Structure

Gather the Components

Glue and Wire Solar Panels


- Insert U4B into plastic slot
- Solder supercapacitor and its Zener diode with jumper to PCB
- Construct and add GPS antenna to PCB
- Add 1" #28 gauge copper wires to PCB for connecting dipole
- Connect solar panel wires to PCB

🗐 - Session	Basic options for your PuTTY session										
Logging ⊡ Terminal Keyboard Bell	Specify the destination you want to o Serial line	connect to Speed 9600									
Features Window Appearance Behaviour Translation	Connection type: Raw O Telnet O Rlogin O Load, save or delete a stored session Saved Sessions										
Selection Colours Data Proxy Telnet Rlogin ++-SSH	Default Settings ALP40-2 LC_Node LVMesh LV_Node NPR Node_Cmd_Line	Load Save Delete									
Serial	Close window on exit: O Always O Never										

Connect U4B to USB-PC-Putty

Set Callsign, Band and Channel

Uses Tiny BASIC for Programming

SSD (EEPROM) File Manager

Vame	Type	Size	Blocks	Start	Compiled	
TRACKER	1001	23		1	12	
Ctrl-C = Co = = New fil			= Cut directo		rl-V = Paste = Rename	ENT = Enter/Up Dir DEL = Delete

QRP Labs, 2022	Date	27-APR-22	GPIO	0	O	1945
	Time	09:11:56	GPIO	1	1	2063
	Si5351A TX	OK	GPIO	2	O	1981
Configuration	LM75 temp	310 K	GPIO	3	1	2097
Run program	Battery	4.54 V	GPIO	4	0	1980
Text editor	System freq.	8001318	GPIO	5	1	2105
File manager	TCXO freq.	25000000	GPIO	6	O	1985
Command line			GPIO	7	1	2086
Hardware test	GPS Longtitude	02	GPIO	8	Θ	1959
Factory reset	GPS Latitude	36	GPIO	9	1	
Update F/W	GPS Altitude	0.	GPIO	10	1	
	GPS Locator	KM	GPIO	11	1	
	GPS Validity	A	GPIO	12	1	
	GPS Fix	3D	GPIO	13	1	
	GPS Sats Fix	9	GPIO	14	1	
	GPS Tracking	5	GPIO	15	1	
	sat SNR	36	GPIO	16	1	
			GPIO	17	1	
	Calibrating sy	stem freq	GPIO	18	1	

U4B Hardware Test

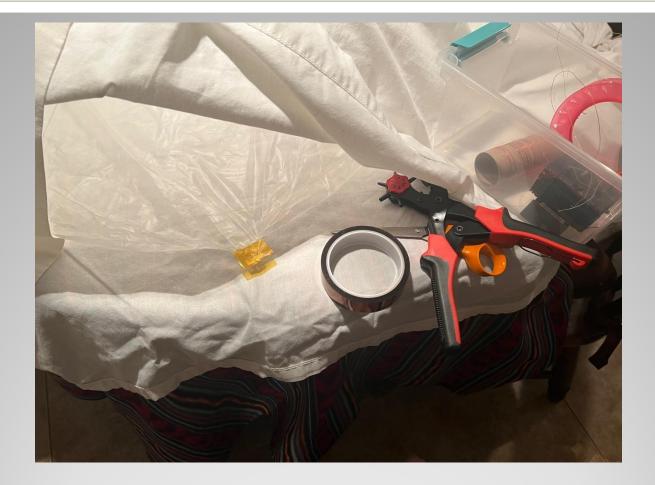
- Test, test and test payload with software
- Prep balloon, stretch if desired 103"=Pi*D
- Construct antenna and connect to payload
- Morning of launch, fill balloon with gas
- Make sure balloon has enough lift
- Seal balloon valve and connect payload

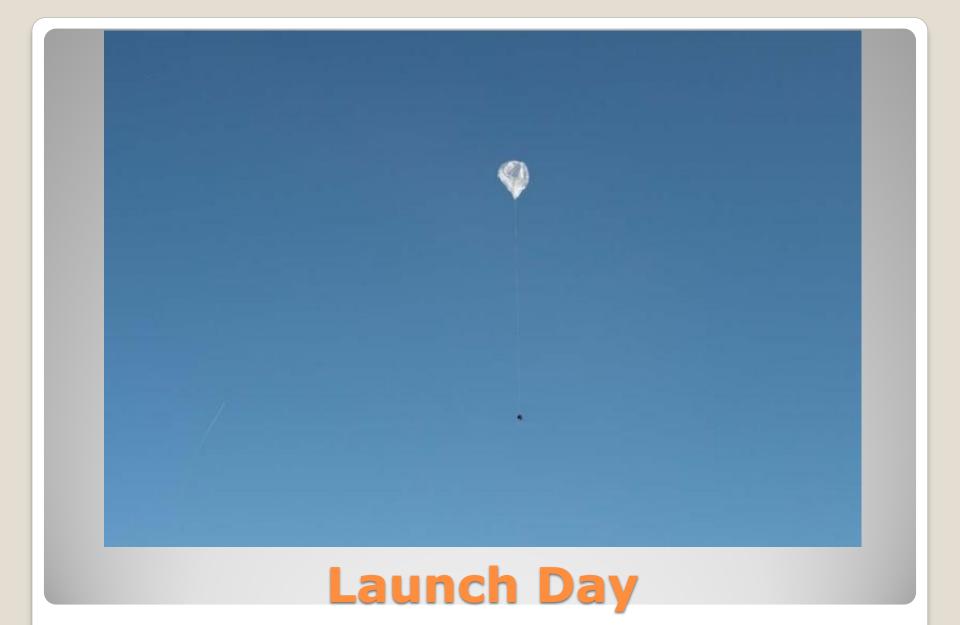
Before Launch To Do List

SuperP	ressure	Balloc	n float	calcula	itor (by S	teve Rar	ndall)	Versi	on 1g – 17/1	1/2020		Gas Density T	Table in Kg/cu m			
												at 101.325kPa at MSL	0 deg C	15 deg C		
	Chosen Gas	Free Lift	SP b	alloon	Payload	Gas	Total		Neck	Launch		Hydrogen	0.0899	0.0852		
Gas	Density	(g) vol (cu m) weight (g)		Weight (g)	Mass (g)	Mass (Kg)		Lift (g)	Gas Fill (cu m)	Helium	0.1786	0.1693			
Hydrogen	0.0852	5.00	0.305	48.00	14.00	5.010648	0.0670	>>>	19.0000	0.0588	<<<	Helium 97%	0.2120	0.2010		
								-				Air	1.2920	1.2247		
System Der	nsity at float	(Kg/cum)	К		5	1			Float					Atmospheric		
0.2197			0.020692		Internal Pressure (kPa External Pressure (kPa) Tem					Temp (deg C)		Altitude (m)		Pressure (kPa		
					14.688178		13.63868			-56,46	>>>	14250	<<<	101.325		
free lift rati	io (see [1])		к/V				ļ					(46740 ft)				
0.074615			0.067841		Differential Pressure at float											
					(kPa)		(psi)					Superpressure		Altitude at wl		
				>>>	1.0495		0.1522	<<<				Onset (m)		full, superpre		
											>>>	13780	<<<	down into flo		
					Suppe	r Pressure l	by [1]					(45198.4 ft)				
Use:					(kPa)		(psi)									
	Inputs in gre	nputs in green cells		>>>	1.0177		0.1476	<<<								
	Results in ar	rowed pin	k cells													

Calculate Final Altitude

New Flat Yokohama Balloon


Stretched Balloon


ALP40-A transmits on the 10 m band Cut a #34 gauge copper wire and fishing line to 9' in length Place them next to each other stretched and taped across room Use a small amount of RTV and rub on the wire/fishing line, let dry Cut the copper wire to length and solder to PCB Fishing line ties to PCB and balloon

Mass of Tube to Fill Balloon (19g)

Attach the Balloon to Payload

Play Video of Launch Site

Where Did It Go - Tracking

- Callsign, 4-character locator and dBm
- Message length 50 bits with FEC
- Modulation 4-FSK tone separation 1.46Hz
- Transmission starts 2 s into even minute
- Duration of transmission 110.6 seconds
- Bandwidth of 6 Hz
- Minimum of -27 dB S/N (2500Hz ref BW)

WSPR Technical Information

Receiving WSPR with WSJT-X

- <u>LU7AA</u> Nice map display, telemetry, call sign of Hams receiving the balloon, track, winds aloft and footprint
- <u>Spot Search</u> Shows multi-day track for balloon, telemetry, raw transmissions, days airborne, miles traveled and winds /weather aloft
- <u>Sonde Hub</u> Shows track/path, telemetry, clicking the float button gives a predicted path for the future and basic information
 <u>WSPR NET</u> Shows location and all hearing

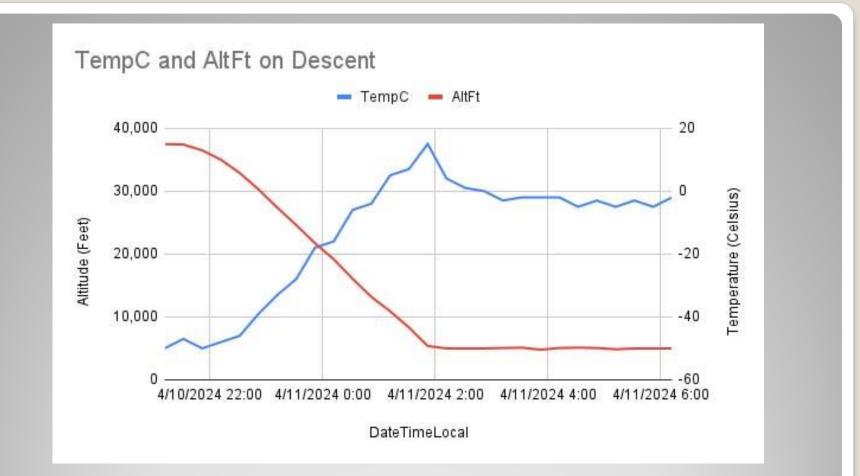
Balloon Tracking Sites

- Google Sheets/Excel is telemetry's friend
- Once you download telemetry from <u>Spot</u>
- Look at map grid squares vs other data
- Make charts to compare different values

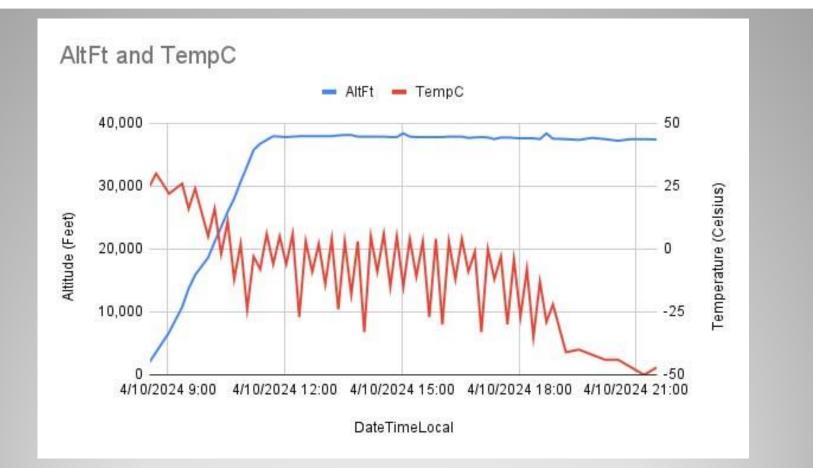
Analyzing the Telemetry

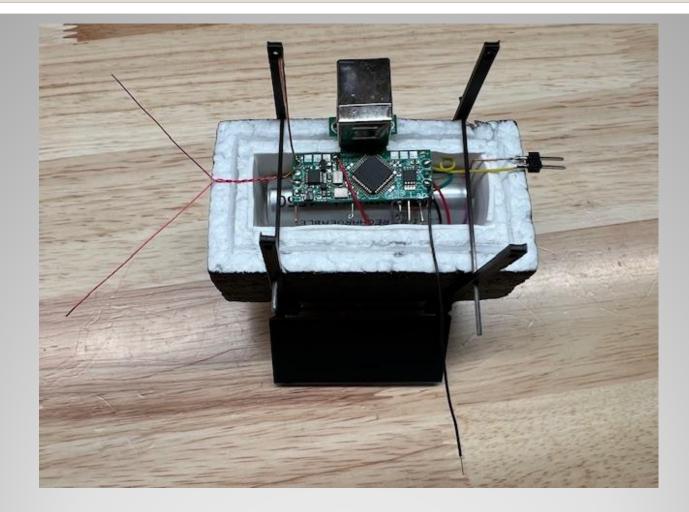
Finding ALP40-B

Мар	DateTimeUtc	DateTimeLocal	RegCall	RegGrid	RegPower	EncCall	EncGrid	EncPower	Grid56	AltM	TempC	Voltage	Knots	GpsValid	AltMGraph	AltFt	KPH	MPH	TempF	Grid	DistKm	DistMi	GpsKPH	GpsMPH
map	2024-04-11 14:12	2024-04-11 07:12	KB7HTA	DM80	10																			
map	2024-04-11 13:52	2024-04-11 06:52	KB7HTA	DH80	10	Q78STR	LK41	0	FH	1,500	8	3.85	ø	1	1,500	4,921	ø	ø	46	DH80FH	5	з		
map	2024-04-11 13:32	2024-04-11 06:32	KB7HTA	DH80	10	Q78RER	K026	17	FG	1,540	4	3.85	ø	1	1,540	5,052	ø	ø	39	DH80FG	5	з		
nap	2024-04-11 13:12	2024-04-11 06:12	KB7HTA	DM80	10	Q78STS	JL04	10	FH	1,520	-2	3.85	ø	1	1,520	4,987	ø	ø	28	DH80FH	5	з		
nap	2024-04-11 12:52	2024-04-11 05:52	KB7HTA	DH80	10	Q78REQ	JA43	7	FG	1,520	-5	3.85	ø	1	1,520	4,987	Ø	Ø	23	DH80FG	Ø	ø		
nap	2024-04-11 12:32	2024-04-11 05:32	KB7HTA	DH80	10	Q78REQ	JH5Ø	30	FG	1,520	-3	3.85	ø	1	1,520	4,987	ø	ø	27	DH80FG	5	з		
nap	2024-04-11 12:12	2024-04-11 05:12	KB7HTA	DM80	10	Q785TQ	3A43	7	FH	1,480	-5	3.85	ø	1	1,480	4,856	ø	0	23	DM80FH	ø	ø		



Charlie, N5CET of Alpine, Texas searched down one side of the line 50 yards out, shown in the previous slide and back down the other. After a 9 mile walk and just before getting back to the car parked on a dirt road, he was successful in finding the balloon. Thank you!


ALP40-B Descent to Alpine, Tx


AltFt and Voltage

ALP40-B Descent to Alpine, Tx

ALP40-B Insulation Effectivness

ALP40-B Payload Photo

- Constructing a Pico Balloon is a lot of work. It is also very rewarding. It is kind of an ego trip watching your call sign show up all around the world, and you meet a lot of like minded Hams.
- It is not terribly expensive, \$120 or less.
- The American Legion LVARBG is growing, free membership. Come join in on all the fun and build a balloon of your own. We meet every 2nd Wednesday from 6 – 8 pm, American Legion Post 40 Annex (Trailer), 425 E. Van Wagenen Street, Henderson, NV.

Shane, KG7QWH at Work – Linda, KJ7OWF Provides an Extra Hand

Get a Copy of the Presentation